Towards Data Science
En podcast av The TDS team

Kategorier:
131 Avsnitt
-
51. Adrien Treuille and Tim Conkling - Streamlit Is All You Need
Publicerades: 2020-09-16 -
50. Ken Jee - Building your brand in data science
Publicerades: 2020-09-09 -
49. Catherine Zhou - The data science of learning
Publicerades: 2020-09-02 -
48. Emmanuel Ameisen - Beyond the jupyter notebook: how to build data science products
Publicerades: 2020-08-26 -
47. Goku Mohandas - Industry research and how to show off your projects
Publicerades: 2020-08-19 -
46. Ihab Ilyas - Data cleaning is finally being automated
Publicerades: 2020-08-12 -
45. Kenny Ning - Is data science merging with data engineering?
Publicerades: 2020-08-05 -
44. Jakob Foerster - Multi-agent reinforcement learning and the future of AI
Publicerades: 2020-07-29 -
43. Ian Scott - Data science at Deloitte
Publicerades: 2020-07-22 -
42. Will Grathwohl - Energy-based models and the future of generative algorithms
Publicerades: 2020-07-15 -
41. Solmaz Shahalizadeh - Data science in high-growth companies
Publicerades: 2020-07-08 -
40. David Meza - Data science at NASA
Publicerades: 2020-07-01 -
39. Nick Pogrebnyakov - Data science at Reuters, and the remote work after the coronavirus
Publicerades: 2020-06-24 -
38. Matthew Stewart - Data privacy and machine learning in environmental science
Publicerades: 2020-06-17 -
37. Sean Knapp - The brave new world of data engineering
Publicerades: 2020-06-10 -
36. Max Welling - The future of machine learning
Publicerades: 2020-06-03 -
35. Rubén Harris - Learning and looking for jobs in quarantine
Publicerades: 2020-05-27 -
34. Denise Gosnell and Matthias Broecheler - You should really learn about graph databases. Here’s why.
Publicerades: 2020-05-20 -
33. Roland Memisevic - Machines that can see and hear
Publicerades: 2020-05-13 -
32. Bahador Khalegi - Explainable AI and AI interpretability
Publicerades: 2020-05-06
Note: The TDS podcast's current run has ended. Researchers and business leaders at the forefront of the field unpack the most pressing questions around data science and AI.